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(b)

Figure 6.1 Two sample images. The scene in (a) shows a table illuminated by a yellow
illuminant. The scene in (b) shows a desk illuminated by sunlight falling through a blue cur-

tain. This creates a blue background illumination. The lamp on the desk was also switched
on.

;. We have already derived this equation in Section 3.6. The algorithms discussed in this
chapter assume that the illuminant is uniform across the entire image, i.e. the irradiance
does not depend on the coordinates (x, y). Algorithms that do not make these assumptions
are discussed in the next chapter.

6.1 White Patch Retinex

The white patch retinex algorithm is basically just a simplified version of the retinex
algorithm (Cardei and Funt 1999; Funt et al. 1998. 1996: Land and McCann 1971), which
is described in the next chapter. The retinex algorithm relies on having a bright patch
somewhere in the image. The idea is that, if there is a white patch in the scene, then this
patch reflects the maximum light possible for each band. This will be the color of the
illuminant, i.e. if R;(x, y) = 1 forall i € {r, g. b} and G(x, y) =1, then

li(x,y)=L;. (6.3)

If one assumes a linear relationship between the response of the sensor and pixel colors,
ie. ¢j(x, ¥) = li(x, y), and one also assumes that the sensor’s response characteristic is
similar to delta functions, then the light illuminating the scene simply scales the product
of the geometry term G and the reflectance R; of the object.

ci(x,y) = Gx, VIR (x, v)L; (6.4)
Therefore, we can rescale all color bands once we have located such a bright patch. In

practice, one does not look for a white patch but looks for the maximum intensity of each
color channel. Let L; . be the maximum of each band over all pixels.

Limax = max{c;(x, Vil (6.5)
Xy
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Figure 6.2 The white patch retinex algorithm is able to perform some color adjustments
for the image shown in (a) but the image still looks very yellow. The white patch retinex
algorithm does not work very well for the image shown in (b) because of the nonuniform

illuminant.

This maximum is then used to scale each color band of the pixels back to the range [0, max]

ci(x,y) .
oilx,y) = ——— =Glx, VIR (X, ¥) (6.6)

L i.max

where o(x, v) = [o,(x, ¥), 0g(x, ¥), op(X. ,\')]’ is the color of the output pixel.

Figure 6.2 shows the results achieved with the white patch retinex algorithm. The
problem with the white patch retinex algorithm is that it assumes that a single uniform
Hluminant illuminates the scene. Therefore, it does not work il we have a nonuniform
{lumination as is the case for the image shown in (b). It also performs poorly on the image
shown in (a). This image has some bright specularity in the glasswarc on the table. The
resulting image is still too yellow.

A drawback of this simple version of the white patch retinex algorithm is that a single
bright pixel can lead to a bad estimate of the illuminant. If we have a highlight in the image
caused by an object that does not reflect the color of the illuminant uniformly, then the
estimate will not be equivalent to the actual color of the illuminant. Noise in the image will
also be a problem. The white patch retinex algorithm is also highly susceptible © clipped
pixels (Funt et al. 1998). 1f one or more color channels are clipped, then the color of the
illuminant cannot be reliably estimated from the brightest pixel.

The white patch retinex algorithm can be made more robust by computing a histogram
H; for each color channel i. The histogram tells us how many image pixels have a particular
intensity for a giverr color channel. Let be the number of buckets of the histogram and let
H;(j) be the number of pixels ol color channel i that have intensity j. Instead of choosing
the pixel with the maximum intensity for each color channel, one can choose the intensity
such that all pixels with intensity higher than the one chosen account for some percentage
of the total number of pixels. This method is also used as an automatic white balance by
some scanning software. Finlayson et al. (2002) also use it in their method for shadow
removal. Let p be the percentage, i.e. 1% or a similar small value, and n be the total
number of pixels in the image. Let ¢;(j) be the intensity of color channel i represented by
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bucket j of the histogram H;. Then the estimate of the illuminant is given by

L; = €iljs) (6.7)
with j; chosen such that
pin = X H; (k) and pn = Z H; (k). (6.8)
k=j; k= ji+1

Results for this algorithm are shown in Figure 6.3. The image of the colfee table looks
much better now.

6.2 The Gray World Assumption

The gray world assumption was proposed by Buchsbaum (1980). [t estimates the illuminant
using the average color of the pixels. That the illuminant could be estimated by comput-
ing some kind of average of the light received by the observer was known for a long
timé and was also suggested by Land (sce Judd 1960). However. Buchsbaum was the first
to formalize the method. The gray world assumption is probably one of the best-known
algorithms for color constancy. Many algorithms have been proposed, which use the gray
world assumption in one way or another (Ebner 2002, 2003a.c, 2004c.d; Finlayson et al,
1998: Gershon et al. 1987; Moore et al. 1991; Paulus et al. 1998; Pomierski and Grof
1995: Rahman et al. 1999; Tominaga 1991). These algorithms are all based on the assump-
tion that, on average, the world is gray. Buchsbaum’s algorithm estimates the illuminant by
assuming that a certain standard spatial spectral average exists for the total visual field. This
average is used to estimate the illuminant, which is then used to estimate the reflectances.
Results were only shown for simulated data. The derivation of the gray world assumption
given here differs from the one given by Buchsbaum. Buchsbaum considers overlapping
response characteristics of the sensor array. We assume nonoverlapping response charac-
teristics because little may be gained by using a more general transform (Barnard et al.
2001; Finlayson et al. 1994b). In addition, we also include geometry information in the
reflection model whereas Buchsbaum used a simple reflection model without any geometry
information.

From the theory of color image formation, we have seen that the intensity /;(x,y)
measured by a sensor i with i € {r, g, b} at position (x, y) on the sensor array can be
approximated by

Lix.y) =G, y)Ri(x, y)L;(x,¥) (6.9)

if we assume that the sensor sees a surface that reflects light equally in all directions,
ie. it is a Lambertian surface. Each sensor determines the intensity of the light of a
particular wavelength 4;. Here, G(x, y) is a factor that depends on scene geometry at the
corresponding object point that is shown at position (x, y) and the type of lighting model
used, R;(x, y) is the amount of light reflected at the corresponding object position (x, y)
for wavelength A;, and L;(x, y) is the intensity of the illuminant at the corresponding object
position.

For the derivation of this equation, we have also assumed ideal sensors that only respond
to light of a single wavelength, i.e. the sensor can be described by a delta function. This is an

ALGOR
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where histograms were used to

Figure 6.3 Results for the white patch retinex algorithm
find a white patch. The histograms (or all the three color bands of the input image are also
a vertical line. All the three cutoff values represent

shown. The cutolf value is marked with
an estimate of the illuminant.
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assumption frequently made to achicve color constancy. From the preceding equation, we
see that the illuminant scales the product between the geometry factor and the reflectance
of the object. Thus, one can achieve color constancy by independently scaling the three
color bands if the light illuminating the scenc was known,

For display purposes, the measured intensities are often gamma corrected and trans-
formed to the range [0, 1] or [0, 255]. In order to apply the gray world assumption, we
need to linearize pixel colors. This point is very important and was not mentioned by
Buchsbaum. If we process stored images, for instance, images that are stored as TIFF,
JPEG, or PPM files (Murray and van Ryper 1994), then we need to first linearize the
intensity values. If the pixe

colors are gamma corrected, we need to undo this gamma
correction. If the colors are gamma corrected with a factor of 1/2.2, then we linearize the
pixel colors by applying a gamma correction with a factor of 2.2. The problem is that
quite often the gamma factor of the original gamma correction is not known. In this case.
it is assumed that images use the sSRGB color space, which assumes a gamma of 2.2,
See Section 4.5 for details on how to transform a given image (o linear intensity space,
Let

clx, ¥) = [c.(x, ¥), ¢ (x, ), ep(x, M)’ (6.10)
be the linearized color of the input image at position (x. y). Let [0, 1] be the range of the
intensities for each color channel.

It we assume that the colors of the objects in view are uniformly distributed over
the entire color range
in the scene, then the
show this, we assume

and we have a sufficient number of objects with different colors
average color computed for each channel will be close to 1, To
a linear mapping between sensor measurements and image pixel
colors, i.c. ¢;(x, y) = [;(x, y), and an illuminant that is uniform across the entire image,
e, Li(x,y) = L;. In this case, space average color a of an image of size n = n, x n,,
where n, is the width and n, is the height of the image, is given by

1
= i (k. ¥ (6.11
17 ”Z'-“--‘J (0.11)
iy
== _
= - Lc,(_r._vue,-(_l-. V)L (6.12)
s
1 =
=L;— Glx, vIR (x, v) (6.13)
» \Z\J (x, (x, ») )

where G(x, y) is a factor that depends on scene geometry, R;(x, v) is the reflectance of
the object point displayed at position (x, v) in the image, L; is the intensity of the light
that illuminates the scene, and the index i denotes the corresponding color channel,

Let E]G R;] be the expected value of the geometry factor G multiplied by the reflectance
R;. Both can be considered as independent random variables, as there is no correlation
between the shape and the color of an object. Let us assume that the reflectances are uni-
formly distributed, i.e. many different colors are present in the scene and each color is
equally likely. Therefore, the reflectance can be considered to be a random variable drawn
from the range [0, 1]. We obtain (Johnson and Bhattacharyya 2001)

.1
EIGR;] = E[G|E[R/] = E|G] (/

o

|
X (!.r) = f:'i(:‘]g. (0.14)
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For large n, we have

I
i= L Glx, vRi(x, v 6.15
a, ”; (X, yIR; (v, y) (6.135)
~ LiE[GR;] (6.16)
1
— !.,-1;'[(;'1;. (6.17)

Instead of assuming that the reflectances are uniformly distributed over the range [0, 1],
we can also use the actual distribution of reflectances to compute E[R;] (Barnard et
al, 2002a). In this case, we also need to know the shape of the response curves of the
camera to compute the expected value, This value would then depend on the set of
reflectances chosen for the surrounding and would also depend on the type of camera

used.
We now see that we can use space average color to estimate the color of the illuminant

s
)
L ¢

a;i = fa; (6.18)

where f = m is a factor that depends on the scene viewed. Note that this derivation is
only valid if the relationship between measured sensor values and pixel colors is linear.
Given the color of the illuminant, we can estimate the combined geometry factor and the

reflectance of the object. With ¢;(x, y) = G(x, y)R;(x, ¥)L;, we have,
i(x, G, )
oi(x, v) = -tf( y) ~— = Gx, VR(x, ¥) (6.19)
’ L; fa; ’

where 0 = [0, (X, ¥). 0,(x, v), 0p(x, )] is the color of the output pixel. Thus, the com-
bined geometry and reflectance factor can be estimated by dividing the color of the current
pixel by the product of f and space average color. The factor f only scales all color
channels equally and affects only the intensity of the colors. It can be set as f = 2. This
assumes that £[G] = 1, i.e. there is a perpendicular orientation between the object and
the camera. The factor f can also be estimated directly from the image. In this case,
one first rescales each channel by dividing the intensity by the average value ol the
channel. Next all channels are rescaled equally such that, say, only 1% of all pixels are
clipped.

Figure 6.4 shows the results achieved with the gray world assumption. In practice, we
have found the gray world assumption to produce better results than the white patch retinex
algorithm. The gray world assumption is based on the average ol a large number of pixels.
In this respect, it is much more robust than the white patch retinex, which is only based
on the maximum pixel value. If onc only has a single pixel that is very bright, then the
white patch retinex algorithm will probably produce incorrect results, This holds especially
if shiny objects are in the scene, which reflect all of the incident light, which may result
in clipped pixels.

The gray world assumption works nicely if we only have a single illuminant. However.
if we have multiple illuminants, then the gray world assumption does not work. We can see
this in image (b) of Figure 6.4. This is not surprising, as one of the assumptions was that we
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g

(a)

Figure 6.4 Gray world assumption. The gray world assumption produces nice results if

we only have a single illuminant (a). If we have multiple illuminants, then t}

1e gray world
assumption does not work very well (b).

(a) (h)

Figure 6.5 The gray world assumption will fail to produce correct colors if sufficiently
large numbers of colors are not present in the scene. A leaf from

a banana plant is shown
in (a). The image in (b) shows the output image,

have a uniform illuminant. The gray world assumption requires that there be a sulficiently
large number of different colors in the image. If this is not the case, then the gray world

assumption will not work. Figure 6.5(a) shows a close-up of a leaf from a banana plant.
The average of the channels for this image is [0.227827, 0.339494, 0.049392]. Thus, the
gray world assumption will increase the influence of the blue channel
The output image is shown in (b). Clearly, this is not what is desired.
The gray world assumption as well as the wt

to a great extent.

lite patch retinex algorithm are used
frequently for automatic white balance. The popular draw utility written by Coffin (2004)
scales each color channel using the average as an automatic white-balance option. Afier
rescaling, the white point is set at the 99th percentile. In other words,

all channels are
scaled equally such that only the top 1% of all pixels are clipped. This assumes that there
arc only a few highlights.
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Another assumption is that the reflectances of the image are uniformly distributed
over the range [0,1]. This assumption may not be correct in practice. Suppose that we
have one uniformly colored object in the image and that the object covers mosl of the
image pixels. In this case, space average color will be close to the color of the object
irrespective of the background. Therefore, it may make sense to segment the image before
performing the averaging operation. Gershon et al. (1987) suggest that the input image
may be segmented into different regions. Let n, be the number of different regions and let
a(R;) = [a,(R;), ag(R;), ab(RJ-HT be the average color of region j € (1, ..., 1.} We now
caleulate the average color by looping over the unique regions:

"y

|k,
a4 = — Zu,-ue ) (6.20)

r _ﬂl=]

This space average color is then used to calculate the reflectances.
L; = fa; (6.21)

Obviously, if the input image is segmented before calculating the average, then each region
contributes only once to the average. The result is independent of the number of pixels the
different arcas cover. Figure 6.6 shows a segmented image. For the image shown in (a),
the pixels that belong to the particu-

each region was colored using the average color of
lar region. To show the different regions of the segmented image better, the regions are
shown with random colors in (b). Figure 6.7 shows the result when segmentation is used

to compute the average.

Suppose that we have one large object that is covered by a second object in front of
it. If both objects have a different color, a segmentation algorithm may segment the image
into three regions even though there are only two unique colors. In order to solve this
problem, instead of segmenting the image we could compute a color histogram. Such a
color histogram is shown in Figure 6.8. Figure 6.8 (a) shows the input image. The plot in
(b) shows the color histogram, To visualize the histogram better, each color channel was
quantized into 10 different intensities. Since we have three color channels, the histogram
has 1000 buckets. For cach bucket a cube is drawn. The size of the cube is proportional to

(a) (b)

Figure 6.6 Segmented input image. For the image shown in (a), each region was assigned
the average color of the pixels that belong to that region. For the image in (b), random

colors were used for each region.




(a) (b)

Figure 6.8 The input image is shown in (a). The graph in (b) shows the color histogram. A

quantization of 10 was used for each color channel. Therefore, there are 1000 buckets in the
re the size of the cube is proportional
original image.

histogram. Each bucket is represented by a cube whe
to the number of pixels of the same color in the

the number of pixels having the corresponding color. The peak of the histogram is located
at color [0.85, 0.45, 0.15], which is caused by the yellowish table cloth.
Let ny, be the total number of buckets. Let Ny b

be the number of nonzero buckets and
let ¢() be the color represented by bucke

t j of the histogram. The averagz color can then
be calculated by summing up the colors of the buckets that are nonzero, i.e. averaging over
all unique colors in the image.

| s

a; = — Zr_'r(.j) (6.22)

1"
L

This space average color can then be used to estimate the illuminant, which in turn can be
used to calculate the reflectances. Figure 6.9 shows the result of this algorithm,
[rrespective of the exact method used to estim

the illuminant from all pixels, segment the image, or compute the histogram, the gray world

ate the illuminant, i.e. whether we estimate
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Figure 6.9 Output images produced by estimating the illuminant from the histogram of

the input image.

assumption relies on the assumption that there is only a single illuminant present. However,
in practice this assumption does not hold.

6.3 Variant of Horn’s Algorithm

Horn (1974, 1986) has developed an algorithm for color constancy under varying illumi-
nation. We discuss this algorithm in detail in Section 7.2. Horn’s algorithm assumes that
the illuminant is nonuniform across the image. He suggests that the logarithm of the input
signal be first taken. Next, the Laplacian is applied. Then, a threshold operation is used to
separate a change in reflectance from a change of the illuminant. Changes due to a change
of the illuminant are removed. Finally, the output of the thresholded data is reintegrated to
obtain the log reflectances. Let us now consider what happens if the illumination is constant
over the entire image. If the illuminant is constant, then we can omit taking the Laplacian,
thresholding, and reintegrating.

It is assumed that the image color ¢;(x, v) is basically the product of the reflectance
Ri(x, v) and the illuminant L;(x, v) at the corresponding object location for color channel /.

cilx, vy = Ri(x, v)L;(x, v) (6.23)
For a constant illumination L;(x, yv) = L;, we have
cilx, ¥) = Ri(x, V)L;. (6.24)

Il we now apply the logarithm, the product of reflectance and illuminant turns into a sum

ol logarithms.
log(c;(x, y)) = log(R;(x, v)) +log L; (6.25)

The unknown constant log L; can be removed by transforming the logarithm of the pixel
colors independently for each color channel to the range |0, 1]. This constant docs not
depend on the coordinates (x, v). By transforming each channel to the range [0, 1], this
constant will be subtracted from each channel and the result will be an image independent
of the illuminant. After transforming the log-pixel values to the range [0, 1]. cach channel
is a color constant descriptor, given by the log reflectances. In order to undo the loga-
rithm, we can now exponentiate and then translorm the result a second time to the range




